Correct Answers: | |

Wrong Answers: | |

Unattempted: |

### Question 1

The letters of the word 'ORANGE' have to be arranged such that the vowels occupy only the odd positions. How many different ways are possible?

**A**

36.

**B**

46.

**C**

26.

**D**

56.

**Soln.**

**Ans: a**

This word has 6 letters, out of which 3 are consonants and 3 are vowels. The vowels have to occupy three fixed odd positions. We can place 3 vowels in first odd place, 2 in second odd place and 1 in the third odd place, giving 3 × 2 × 1 = 6 permutations. This will be done with the consonants also. So the total possibilities are 6 × 6 = 36.

### Question 2

In how many ways can 6 prizes be given to 4 students if each of them is equally eligible?

### Question 3

How many four letter words, with all the letters different, can be formed out of the letters of the word 'AFTERSHOCK'?

### Question 4

From a group of 9 boys and 4 girls, in how many ways can 2 boys and 2 girls be selected?

### Question 5

In how many ways can a secretary and general secretary be chosen from a committee of 13 members?

### More Chapters | See All...

Surds and Indices | Deductive Reasoning | Inequalities | Essential Part | Profit and Loss | Coding Decoding | Logarithms | Percentages | abba Series | Venn Diagrams | More...

This Blog Post/Article "Permutations and Combinations Quiz Set 014" by Parveen (Hoven) is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Updated on 2020-02-07. Published on: 2016-05-08